Maximizing the number of spanning trees in Kn-complements of asteroidal graphs
نویسندگان
چکیده
In this paper we introduce the class of graphs whose complements are asteroidal (star-like) graphs and derive closed formulas for the number of spanning trees of its members. The proposed results extend previous results for the classes of the multi-star and multi-complete/star graphs. Additionally, we prove maximization theorems that enable us to characterize the graphs whose complements are asteroidal graphs and possess a maximum number of spanning trees.
منابع مشابه
The Number of Spanning Trees in Kn-complements of Quasi-threshold Graphs
In this paper we examine the classes of graphs whose Kn-complements are trees or quasi-threshold graphs and derive formulas for their number of spanning trees; for a subgraph H of Kn, the Kn-complement of H is the graph Kn H which is obtained from Kn by removing the edges of H . Our proofs are based on the complement spanning-tree matrix theorem, which expresses the number of spanning trees of ...
متن کاملCounting the number of spanning trees of graphs
A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
متن کاملNUMBER OF SPANNING TREES FOR DIFFERENT PRODUCT GRAPHS
In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...
متن کاملAsteroidal number for some product graphs
The notion of Asteroidal triples was introduced by Lekkerkerker and Boland [6]. D.G.Corneil and others [2], Ekkehard Kohler [3] further investigated asteroidal triples. Walter generalized the concept of asteroidal triples to asteroidal sets [8]. Further study was carried out by Haiko Muller [4]. In this paper we find asteroidal numbers for Direct product of cycles, Direct product of path and cy...
متن کاملOn the number of spanning trees of K n ±G graphs
The Kn-complement of a graph G, denoted by Kn−G, is de ned as the graph obtained from the complete graph Kn by removing a set of edges that span G; if G has n vertices, then Kn − G coincides with the complement G of the graph G. In this paper we extend the previous notion and derive determinant based formulas for the number of spanning trees of graphs of the form K n ±G, where K n is the comple...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 309 شماره
صفحات -
تاریخ انتشار 2009